Programming and Software Development CTAG Alignments

This document contains information about four Career-Technical Articulation Numbers (CTANSs) for Programming and Software
Development Career-Technical Assurance Guide (CTAG). The CTANSs are:

Computer Logic
Java Programming
C++ Programming

NS

Microsoft .NET Fundamentals (CTIT012)

1. Computer Logic: CTAN alignment with the Tech Prep Programming and Software Development Pathway in the Career
Field Technical Content Standards of the Ohio Department of Education

Course Description: This course introduces students to the concepts of logic in computer programming design. Students will
use tools such as flowcharts and pseudocode to model problem solutions. The course will cover logic structures such as
sequencing, selection and looping. Students will also learn about data types, arrays, and using variables for input/output
operations. Data validation and program debugging techniques will also be covered.

Advising Notes:

e Student passage of Ohio Career-Technical Competency Assessment end of program assessment

Semester Credit Hours: 3

Alignment:

Learning Outcomes

The student will be able to:

Outcomes and/or Competencies in ODE’s Revised Career Field Technical Content
Standards

1. Describe the Process of
Program Development.

5.1.1. Describe how computer programs and script can be used to solve problems (e.g.,
desktop, mobile, enterprise).

5.1.2. Explain how algorithms and data structures are used in information processing.




5.1.4. Describe, compare, and contrast the basics procedural, structured, object-oriented
(00), and event-driven programming.

5.1.5. Describe the concepts of data management through programming languages.

2. ldentify programming
languages and their
applications.

5.1.6. Analyze the strengths and weaknesses of different languages for solving a specific
problem.

5.1.7. Compare and contrast the functions and operations of compilers and interpreters.

3. Use modeling tools to
design program solutions.

5.1.3. Model the solution using both graphic tools (e.g., flowcharts) and pseudocode
techniques.

5.6.7 Document a design using the appropriate tools (e.g., program flowchart, dataflow
diagrams, Unified Modeling Language [UML]).

4. |dentify data types and use
variables for input and output
operations.

5.2 Computational and String Operations: Develop code that performs computational
and string operations.

5.2.1. Compare and contrast primitive types of numeric and nonnumeric data (e.g., integers,
floats, Boolean, strings).

5.2.2. ldentify the scope of data (e.g., global versus local, variables, constants, arrays).
5.2.3. Write code that uses arithmetic operations.
5.2.4. Write code that uses subtotals and final totals.

5.2.5. Write code that applies string operations (e.g., concatenation, pattern matching,
substring).

5. Identify and use arrays.

5.2.2 Identify the scope of data (e.g., global vs. local, variables, constants, arrays).

6. Identify and use logic
structures.

5.3 Logical Operations and Control Structures: Develop code that uses logical
operations and control structures.

5.3.1. Explain Boolean logic.




5.3.2.

5.3.3.

5.3.4.

5.3.5.

5.3.6.

5.3.7.

5.3.8.

5.3.9.

Solve a truth table.

Write code that uses logical operators (e.g., and, or, not).

Write code that uses relational operators and compound conditions.
Write code that uses conditional control structures (e.g., if, if-then-else).
Write code that uses repetition control structures (e.g., while, for).
Write code that uses selection control structures (e.g., case, switch).
Write code that uses nested structures and recursion.

Write code that creates and calls functions.

5.3.10. Code error-handling techniques

5.3.11. Write code to access data repositories.

5.3.12. Write code to create classes, objects, and methods.

7. Describe and use error-
checking and data validation.

5.3.10 Code error-handling techniques

545

5.4.6

54.7

551

Test the program using defined test cases.
Correct syntax and runtime errors.
Debug logic errors.

Develop programs using data validation techniques.

5.6.14 Ensure code quality by testing and debugging the application (e.g. system testing, user

acceptance testing).

5.6.17 Collect application feedback and maintain the application




8. Create program 5.1.8 Describe version control and the relevance of documentation.
documentation.

5.6.8 Create documentation (e.g., implementation plan, contingency plan, data dictionary, user
help).

9. Create and use functions 5.3.9. Write code that creates and calls functions.
and modules

2. Java Programming: CTAN alignment with the Tech Prep Programming and Software Development Pathway in the Career
Field Technical Content Standards of the Ohio Department of Education

Course Description: This course introduces object-oriented concepts such as instantiation, polymorphism, inheritance, and
encapsulation. Students will learn how to create classes, objects and methods. Java data types, data structures, and events will be
covered. Students will use Java to create console, desktop, and mobile applications.

Advising Notes:

e Student passage of Ohio Career-Technical Competency Assessment end of program assessment
o Recommended Prerequisite - Computer Logic

¢ Regarding Learning Outcome 8, please demonstrate that the course uses data structures and algorithms and program
development.

Semester Credit Hours: 3



Alignment:

Learning Outcomes

The student will be able to:

Outcomes and/or Competencies in ODE’s Revised Career Field Technical Content
Standards

1. Apply object oriented
concepts to develop
programs, including
encapsulation, abstraction,
inheritance, polymorphism,
and interfaces.

5.1.4. Describe, compare, and contrast the basics of procedural, structured, object-oriented
(00), and event-driven programming.

2. Use development tools to
develop programs.

54 Integrated Development Environment: Build and test a program using an
integrated development environment (IDE).

5.4.1. Configure options, preferences, and tools.
5.4.2. Write and edit code in the IDE.

5.4.3. Compile or interpret a working program.
5.4.4. Define test cases.

5.4.5. Test the program using defined test cases.
5.4.6. Correct syntax and runtime errors.

5.4.7. Debug logic errors.

5.6.4 Identify a programming language, framework, and an integrated development
environment (IDE).

5.6.7 Document a design using the appropriate tools (e.g., program flowchart, dataflow
diagrams, Unified Modeling Language [UML]).

5.6.12 Compare and contrast software methodologies (e.g. agile, waterfall)




3. Create classes, objects
and methods using an object
oriented language

5.5.4 Develop programs that call other programs.
5.6.11 Develop the application.

5.3.12. Write code to create classes, objects, and methods.

4. Use primitive and
reference data types in
computational and string
operations.

5.2 Computational and String Operations: Develop code that performs computational
and string operations.

5.2.1. Compare and contrast primitive types of numeric and nonnumeric data (e.g., integers,
floats, Boolean, strings).

5.2.2. Identify the scope of data (e.qg., global versus local, variables, constants, arrays).
5.2.3. Write code that uses arithmetic operations.
5.2.4. Write code that uses subtotals and final totals.

5.2.5. Write code that applies string operations (e.g., concatenation, pattern matching,
substring).

5. Use error checking and
exception handling in
program development.

5.4.5 Test the program using defined test cases.

6. Debug and test program
code.

5.4.6 Correct syntax and runtime errors.
5.4.7 Debug logic errors.

5.6.14 Ensure code quality by testing and debugging the application (e.g. system testing, user
acceptance testing).

7. Test and validate program
output.

5.5.1 Develop programs using data validation techniques.
5.6.13 Perform code reviews (e.g. peer walkthrough, static analysis)

5.6.14 Ensure code quality by testing and debugging the application (e.g. system testing, user
acceptance testing).

5.6.17 Collect application feedback and maintain the application.




8. Use data structures in 5.1.2 Explain how algorithms and data structures are used in information processing.
program development

5.2.2 Identify the scope of data (e.g., global vs. local, variables, constants, arrays).

5.3.8 Write code that uses nested structures and recursion.

9. Use I/0 methods to 5.6.5. Identify input and output (I/O) requirements.
develop programs

5.6.6. Design system inputs, outputs, and processes.

10. Write executable object 5.4.1. Configure options, preferences, and tools.
oriented source code.
5.4.2. Write and edit code in the IDE.

5.4.3. Compile or interpret a working program.

5.6.11 Develop the application.

5.6.16 Deploy the application.

3. C++ Programming: CTAN alignment with the Tech Prep Programming and Software Development Pathway in the Career
Field Technical Content Standards of the Ohio Department of Education

Course Description: This course introduces object-oriented concepts such as instantiation, polymorphism, inheritance, and
encapsulation. Students will learn how to create classes, objects, and member functions. C++ data types, pointers, structures, and
arrays will be covered. Students will use C++ to create object oriented console programs.

Advising Notes:

e Student passage of Ohio Career-Technical Competency Assessment end of program assessment
o Recommended prerequisite: Computer Logic

Semester Credit Hours: 3



Alighment:

Proposed Learning Outcomes and/or Competencies in ODE’s Revised Career Field Technical Content
Outcomes Standards

The student will be able to:

1. Apply object-oriented 5.1.4. Describe, compare, and contrast the basics of procedural, structured, object-oriented
concepts to develop (0O0), and event-driven programming.

programs.

2. Use development toolsto | 5.4 Integrated Development Environment: Build and test a program using an
develop programs. integrated development environment (IDE).

5.4.1. Configure options, preferences, and tools.
5.4.2. Write and edit code in the IDE.

5.4.3. Compile or interpret a working program.
5.4.4. Define test cases.

5.4.5. Test the program using defined test cases.
5.4.6. Correct syntax and runtime errors.

5.4.7. Debug logic errors.

5.6.4 Identify a programming language, framework, and an integrated development
environment (IDE).

5.6.7 Document a design using the appropriate tools (e.g., program flowchart, dataflow
diagrams, Unified Modeling Language [UML]).

5.6.12 Compare and contrast software methodologies (e.g. agile, waterfall)

3. Create classes, objects 5.5.4 Develop programs that call other programs.
and methods using an object
oriented language 5.6.11 Develop the application.




5.3.12. Write code to create classes, objects, and methods.

4. Use primitive and
reference data types such as
pointers in computational
and string operations.

5.2 Computational and String Operations: Develop code that performs computational
and string operations.

5.2.1. Compare and contrast primitive types of numeric and nonnumeric data (e.g., integers,
floats, Boolean, strings).

5.2.2. ldentify the scope of data (e.g., global versus local, variables, constants, arrays).

5.2.3. Write code that uses arithmetic operations.

5.2.4. Write code that uses subtotals and final totals.

5.2.5. Write code that applies string operations (e.g., concatenation, pattern matching,

substring).

5. Use error checking and
exception handling in
program development.

5.4.5 Test the program using defined test cases.

6. Debug and test program
code.

5.4.6 Correct syntax and runtime errors.
5.4.7 Debug logic errors.

5.6.14 Ensure code quality by testing and debugging the application (e.g. system testing, user
acceptance testing).

7. Test and validate program
output.

5.5.1 Develop programs using data validation techniques.
5.6.13 Perform code reviews (e.g. peer walkthrough, static analysis)

5.6.14 Ensure code quality by testing and debugging the application (e.g. system testing, user
acceptance testing).

5.6.17 Collect application feedback and maintain the application.

8. Use data structures in
program development

5.1.2 Explain how algorithms and data structures are used in information processing.

5.2.2 ldentify the scope of data (e.g., global vs. local, variables, constants, arrays).




5.3.8 Write code that uses nested structures and recursion.

9. Use logic structures to
develop programs

5.3 Logical Operations and Control Structures: Develop code that uses logical
operations and control structures.

5.3.1. Explain Boolean logic.

5.3.2. Solve a truth table.

5.3.3. Write code that uses logical operators (e.g., and, or, not).

5.3.4. Write code that uses relational operators and compound conditions.
5.3.5. Write code that uses conditional control structures (e.g., if, if-then-else).
5.3.6. Write code that uses repetition control structures (e.g., while, for).
5.3.7. Write code that uses selection control structures (e.g., case, switch).
5.3.8. Write code that uses nested structures and recursion.

5.3.9. Write code that creates and calls functions.

5.3.10. Code error-handling techniques

5.3.11. Write code to access data repositories.

5.3.12. Write code to create classes, objects, and methods.

10. Use I/O methods to
develop programs

5.6.5. ldentify input and output (I/O) requirements.

5.6.6. Design system inputs, outputs, and processes.

11. Produce object oriented
source code

5.4.1. Configure options, preferences, and tools.

5.4.2. Write and edit code in the IDE.

10




5.4.3. Compile or interpret a working program.
5.6.11 Develop the application.

5.6.16 Deploy the application.

4. Microsoft .NET Fundamentals (CTITO12): CTAN alignment with the Tech Prep Programming and Software Development
Pathway in the Career Field Technical Content Standards of the Ohio Department of Education.

Course Description: This course uses Visual Basic .NET, as an object-oriented/event-driven environment in which to teach
programming concepts. The student will use .NET applications to create and test windows based business programs.

Advising Notes:

e Course prepares students to take MTA Exam 98-372 (Microsoft .NET Fundamentals) or current equivalent.
e Student passage of Ohio Career-Technical Competency Assessment end of program assessment required for

postsecondary credit.

o Recommended Prerequisite — Computer Logic
e The content of Learning Outcome #4 will be addressed in the recommended prerequisite—Computer Logic

Credit Hours: 3

Alignment:

Learning Outcomes

The student will be able to:

Outcomes and/or Competencies in ODE’s Revised Career Field Technical Content
Standards

1. Use .NET framework
concepts (i.e. basic
application settings,
variables and constants,
basic control structures such
as sequence, selection and
iteration, event handling and
error/exception handling)

5.2.2. Identify the scope of data (e.g., global vs. local, variables, constants, arrays).

5.3 Logical Operations and Control Structures: Develop code that uses logical
operations and control structures.

5.3.1. Explain Boolean logic.

5.3.2. Solve a truth table.

11




5.3.3. Write code that uses logical operators (e.g. and, or, not).

5.3.4. Write code that uses relational operators and compound conditions.
5.3.5. Write code that uses conditional control structures (e.g., if, if-then-else).
5.3.6. Write code that uses repetition control structures (e.g., while, for).
5.3.7. Write code that uses selection control structures (e.g., case, switch).
5.3.8. Write code that uses nested structures and recursion.

5.3.9. Write code that creates and calls functions.

5.3.10. Code error-handling techniques

5.3.11.Write code to access data repositories.

5.3.12. Write code to create classes, objects, and methods.

2. Use namespaces, classes, | 5.3.8. Write code that uses nested structures and recursion.
methods and attributes in the

NET framework 5.3.9. Write code that creates and calls functions.
3. Compile .NET code 5.4.3. Compile or interpret a working program.
4. Usel/O classes in the 4.6.5. Identify input and output (I/O) requirements.

.NET framework
4.6.6. Design system inputs, outputs, and processes.

5. Describe .NET security 3.2.1. Identify and implement data and application security.

12




